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Running-Time Computation: Introduction and Motivation Use Cases
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Running-Time Computation: Introduction and Motivation Use Cases

Use Case: Infrastructure Planing
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Running-Time Computation: Introduction and Motivation Use Cases

Use Case: Rolling Stock Acquisition
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Running-Time Computation: Introduction and Motivation Definition

Definition

given

track with parameters: signals, speed limits, inclination, curvature,
. . .

composition with parameters: engine force, break force, weight,
resistance, . . .

restrictions: limits on acceleration, limits on jerk, . . .

result

minimal time required to traverse from start to end

location given time s(t) and inverse t(s)

speed at time v(t)

energy consumption
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Running-Time Computation: Introduction and Motivation Requirements

Requirements

Basics

correct

precise

reliable

stable (small variation input → small variation output)

Timetable Optimization, Online Energy Conservation

frequent (re-)evaluation → fast computation
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Forces and Motion

Forces and Motion

Newton

~F = ~a ·m
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Forces and Motion Gravitational Field

Gravitational Field

Approximation

FH = mg sinϕ = h1
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Forces and Motion Air Drag

Air Drag

F
d

F
g

Lord Rayleigh

F =
1

2
ρCAv2

Stokes’ law

F = 6πηRv
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Forces and Motion Accumulated Forces Against Direction of Motion

Accumulated Forces Against Direction of Motion

more forces

mechanical deformation

rotation

...

empirical evaluation

model with a second order polynomial

Resistance

FR(v) = r0 + r1v + r2v
2

(Strahl 1913, Davis 1926, Lukaszewicz 2001)
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Forces and Motion Engine Force

Engine Force
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Forces and Motion Engine Force - Second Order Approximation

Engine Force - Second Order Approximation
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Fz [N](v[m/s]) =


3.000 · 105 − 1.125 · 103v 0 ≤ v < 200/9

7.263 · 105 − 2.726 · 104v + 3.128 · 102v2 200/9 ≤ v < 350/9

4.237 · 105 − 1.120 · 104v + 1.000 · 102v2 350/9 ≤ v
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Differential Equation, Solution and Formulas Differential Equation of Train Dynamics

Differential Equation of Train Dynamics

Combine Forces

F = FR(v) + Fz(v)

Newton

F = a ·m

a = v̇ = d
dtv

Differential Equation of Train Dynamics

v̇ = α+ βv + γv2
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Differential Equation, Solution and Formulas Approximative Solutions, Euler Method

Approximative Solutions, Euler Method

Eulers Method

for ordinary differential equations with a
given initial value

first order approximation

value at n is based on value at n− 1 by
linearization

smaller the steps → better approximation

de facto method

standard step-width 1 second
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Differential Equation, Solution and Formulas The One Exact Solution

The One Exact Solution

A Solution

let κ = β2 − 4αγ then

v(t) =
−β +

√
−κ tan

(
1
2

√
−κ(t+ T )

)

2γ
(1)

is a solution for v̇ = α+ βv + γv2

(CAS: Mathematica, Maple, ...; Brünger/Dahlhaus 2008; Wende 2003; ... )

Existence and Uniqueness

there is a solution (obviously) and this solution is unique

(Picard–Lindelöf 1894)
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Differential Equation, Solution and Formulas Caveats

Caveats

Complex Domain

κ = β2 − 4αγ,
√
−κ ⇒ C→ C

everything with physical correspondance is in R

Periodic Functions
∣∣∣∣<
(
1

2

√
−κ(t+ T )

)∣∣∣∣ < π/2

be aware of branches in inverse functions
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Differential Equation, Solution and Formulas Derived Equations

Derived Equations

speed → time

t+ T =
2√
−κ

arctan
β + 2γv√
−κ

time → distance

let ψ = 1
2

√
−κ(t+ T ) then

s = −βt+ 2 ln cosψ

2γ

distance → time

use root finding, i.e. Brent-Dekker Algorithm

(Brent 1973, Dekker 1969)
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Differential Equation, Solution and Formulas Derived Equations

Derived Equations

Acceleration

a =
−κ sec2 ψ

4γ

Jerk

j =

√
−κ3 sec2ψ tanψ

4γ

Energy Consumption

W =

∫
~F (t) · ~v(t) dt
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Differential Equation, Solution and Formulas Execution Time: Euler Method vs. Exact

Execution Time: Euler Method vs. Exact

Execution Time: Euler Method vs. Exact

euler: many small, simple and inexpensive steps

exact: few large and expensive steps

Intuition

exact implementation will take much longer

consider power-series

however: FPUs

Chebyshev approximation, best uniform approximation,
Padé approximation, Taylor and Laurent series with
range reduction and table lookup; all in hardware
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A Generic Algorithm

A Generic Algorithm

Phases

1 acceleration,

2 holding speed, and

3 deceleration.
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A Generic Algorithm Acceleration and Coasting

Acceleration and Coasting
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A Generic Algorithm Deceleration

Deceleration
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Implementation in Scala Why to Implement and How

Why to Implement and How

Why?

1 proof of concept

2 feasibility with respect to execution time

Requirements

enterprise proven platform

must be efficient and fun to do

Conclusion

platform: Java Virtual Machine

language: Scala
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Implementation in Scala About Scala

About Scala

Object Oriented and Functional hybrid language

early adopter when starting out: one Book

today sort of mainstream: about 20 Books, EU funding for next 5
years, used productively at twitter, ...
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Implementation in Scala Why Scala - On a Superficial Level

Why Scala - On a Superficial Level

Object Oriented Java
Polynomial z = new PolynomialImp(z0,z1,z2);

z.times(2);

Polynomial r = new PolynomialImp(r0,r1,r2);

r.negate();

r.times(3);

final Polynomial f = z.plus(r);

Functional Scala
val f = ( - Polynomial(r0,r1,r2) ) * 3 + Polynomial(z0,z1,z2) * 2

not convinced yet?

what happens if you call r.negate() in Java?

what is f referencing in Java anyways?
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Implementation in Scala Why Scala - “meet and potatoes”

Why Scala - “meet and potatoes”

Why Scala - “meet and potatoes”

functions as first class values, very good for mathematical
modelling

immutability by default, consistency and correctness in provable
sense

lazy evaluation and memoization; remember: computing t(s) is (due
to root finding) expensive, in particular if you don’t need it at all

internal DSLs enable specifications as runnable code (BDD)
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Results and Conclusion Setup: Composition and Track

Setup: Composition and Track

Property Value
Mass [t] 507

Rotational Mass Equivalent [t] 24.5
Brake-Force [kN] 596.6

Resistance-Parameter r0 7122
Resistance-Parameter r1 0.0
Resistance-Parameter r2 13.0

Track

10 km, flat, straight

speed limits: none but v = 0 at end

no limits on acceleration or jerk
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Results and Conclusion Computation Result

Computation Result

1 2 3 4 5 6 7 8 9 10[km]

10

20

30

40

50

60

[
m
s

]

Point Distance [m] Time [s] Speed [m/s]

1 0 0 0
2 481 42.5 200/9
3 2209 97.0 350/9
4 8848 230.6 58.34
5 9515 244.3 350/9
6 9853 255.3 200/9
7 10000 268.5 0
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Results and Conclusion Execution Time

Execution Time

Result

The implementation based on the exact solution executes about 85 times
faster than those based on the euler method.

DEQ Solution Euler Factor

Min. 2050 179550
1. Qu. 2095 181002
Median 2125 182240 85.76
Mean 2129 182534 85.74
3. Qu. 2153 184273
Max. 2276 186597

180000 181000 182000 183000 184000 185000 186000

Euler

2050 2100 2150 2200 2250

Analytisch
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Results and Conclusion Execution Time

Notes

more parameters of the track will have a more severe impact on the
exact solution

implementation, platform and even the hardware (remember the
FPU) will have an influence

however:

factor 85 gives some way to go

we haven’t optimized our implementation in the slightest way

future:

larger experiment with real data
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Results and Conclusion Conclusion

Conclusion

it is feasible to compute the running time of trains exactly

it is actually more faster to do so

exact solution mitigates the ”rounding problem”

in the context of optimization the exact solution is highly beneficial
compared to Euler approximation

thank you!
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Results and Conclusion Conclusion
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