A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus

IAROR RailRome 2011

Dr. Thomas Schank

February 17th 2011

Dr. Thomas Schank

- Physics and Mathematics; University of Konstanz, Germany
- Ph.D. in Computer Science; University of Karlsruhe, Germany
- today: Swiss Federal Railways, K-IT Business Applications

Table of Contents

- Running-Time Computation: Introduction and Motivation
- **2** Forces and Motion
- Oifferential Equation, Solution and Formulas
- 4 Generic Algorithm
- Implementation in Scala
- 6 Results and Conclusion

Running-Time Computation: Introduction and Motivation

2) Forces and Motion

- 3 Differential Equation, Solution and Formulas
- 4 Generic Algorithm
- 5 Implementation in Scala
- 6 Results and Conclusion

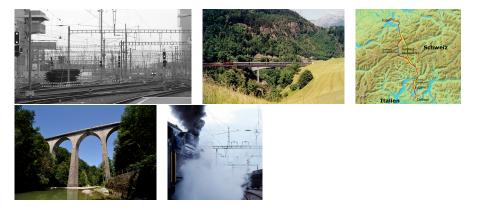
Use Case: Timetable Planning

Online Timetable

From:	Bern		Date:	We, 16.02	.11	«	» » Calendar	
To:	Zürich Flughafen		Time:	06:40		O Departure	Arrival	
Via:					» Search connection			
» Advanced search » New request » Return journey » Continue journey								
Details	s Station/Stop	Date	Time	Duration	Chg.	Travel with	Occupancy	
0 1	Bern Zürich Flughafen	We, 16.02.11	dep 04:21 arr 05:30	1:09	0	IR	1. 🗰 2. 🗰	
0 2	Bern Zürich Flughafen	We, 16.02.11	dep 04:40 arr 06:38	1:58	1	IR, S2	1. 🗰 2. 🗰	
0 3	Bern	We, 16.02.11	dep 05:30 arr 06:46	1:16	1	IC, IR	1. 👯 2. 👯	
0 4	Bern Zürich Flughafen	We, 16.02.11	dep 05:30 arr 06:50	1:20	0	IC	1. 🗰 2. 🗰	

?

Use Case: Infrastructure Planing



Use Case: Rolling Stock Acquisition

7 / 40

Definition

given

- **track** with parameters: signals, speed limits, inclination, curvature, ...
- **composition** with parameters: engine force, break force, weight, resistance, ...
- restrictions: limits on acceleration, limits on jerk, ...

result

- minimal time required to traverse from start to end
- location given time s(t) and inverse t(s)
- speed at time v(t)
- energy consumption

8 / 40

Requirements

Basics

- correct
- precise
- reliable
- ullet stable (small variation input ightarrow small variation output)

Timetable Optimization, Online Energy Conservation frequent (re-)evaluation \rightarrow fast computation

Running-Time Computation: Introduction and Motivation

Forces and Motion

- 3 Differential Equation, Solution and Formulas
- A Generic Algorithm
- 5) Implementation in Scala
- 6 Results and Conclusion

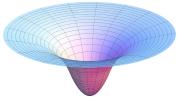
Forces and Motion

Newton

$$\vec{F} = \vec{a} \cdot m$$

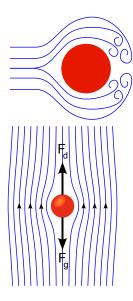
Gravitational Field

Approximation



$$F_H = m g \sin \varphi = h_1$$

Air Drag



Lord Rayleigh

$$F = \frac{1}{2}\rho CAv^2$$

Stokes' law

 $F = 6\pi \eta R v$

13 / 40

Accumulated Forces Against Direction of Motion

more forces

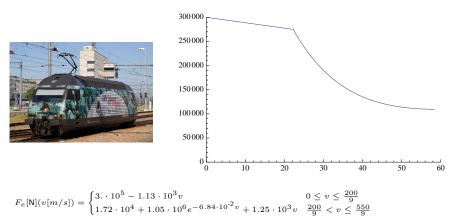
- mechanical deformation
- rotation
- ...
- empirical evaluation
- model with a second order polynomial

Resistance

$$F_R(v) = r_0 + r_1 v + r_2 v^2$$

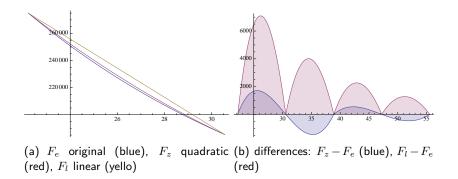
(Strahl 1913, Davis 1926, Lukaszewicz 2001)

Engine Force



15 / 40

Engine Force - Second Order Approximation



$$F_{z}[\mathsf{N}](v[m/s]) = \begin{cases} 3.000 \cdot 10^{5} - 1.125 \cdot 10^{3}v & 0 \le v < 200/9\\ 7.263 \cdot 10^{5} - 2.726 \cdot 10^{4}v + 3.128 \cdot 10^{2}v^{2} & 200/9 \le v < 350/9\\ 4.237 \cdot 10^{5} - 1.120 \cdot 10^{4}v + 1.000 \cdot 10^{2}v^{2} & 350/9 \le v \end{cases}$$

Forces and Motion

Oifferential Equation, Solution and Formulas

- 4 A Generic Algorithm
- 5 Implementation in Scala
- 6 Results and Conclusion

Differential Equation of Train Dynamics

Combine Forces

$$F = F_R(v) + F_z(v)$$

Newton

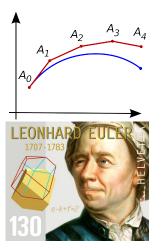
$$F = a \cdot m$$

 $a = \dot{v} = \frac{\mathrm{d}}{\mathrm{d}t}v$

Differential Equation of Train Dynamics

$$\dot{v} = \alpha + \beta v + \gamma v^2$$

Approximative Solutions, Euler Method



Eulers Method

- for ordinary differential equations with a given initial value
- first order approximation
- value at n is based on value at n-1 by linearization
- $\bullet\,$ smaller the steps $\rightarrow\,$ better approximation
- de facto method
- standard step-width 1 second

The One Exact Solution

A Solution

let $\kappa=\beta^2-4\alpha\gamma$ then

$$v(t) = \frac{-\beta + \sqrt{-\kappa} \tan\left(\frac{1}{2}\sqrt{-\kappa}(t+T)\right)}{2\gamma} \tag{1}$$

is a solution for
$$\dot{v} = \alpha + \beta v + \gamma v^2$$

(CAS: Mathematica, Maple, ...; Brünger/Dahlhaus 2008; Wende 2003; ...)

Existence and Uniqueness

there is a solution (obviously) and this solution is unique

(Picard-Lindelöf 1894)

Caveats

Complex Domain

$$\begin{split} \kappa &= \beta^2 - 4\alpha\gamma, \sqrt{-\kappa} \quad \Rightarrow \quad \mathbb{C} \to \mathbb{C} \\ \text{everything with physical correspondance is in } \mathbb{R} \end{split}$$

Periodic Functions

$$\left| \Re \left(\frac{1}{2} \sqrt{-\kappa} (t+T) \right) \right| < \pi/2$$

be aware of branches in inverse functions

Derived Equations

 $\mathsf{speed} \to \mathsf{time}$

$$t + T = \frac{2}{\sqrt{-\kappa}} \arctan \frac{\beta + 2\gamma v}{\sqrt{-\kappa}}$$

time \rightarrow distance

let
$$\psi=\frac{1}{2}\sqrt{-\kappa}(t+T)$$
 then
$$s=-\frac{\beta t+2\ln\cos\psi}{2\gamma}$$

distance \rightarrow time

use root finding, i.e. Brent-Dekker Algorithm

(Brent 1973, Dekker 1969)

Derived Equations

Acceleration

$$a = \frac{-\kappa \sec^2 \psi}{4\gamma}$$

Jerk

$$j = \frac{\sqrt{-\kappa}^3 \sec^2 \psi \tan \psi}{4\gamma}$$

Energy Consumption

$$W = \int \vec{F}(t) \cdot \vec{v}(t) \,\mathrm{d}t$$

Execution Time: Euler Method vs. Exact

Execution Time: Euler Method vs. Exact

- euler: many small, simple and inexpensive steps
- exact: few large and expensive steps

Intuition

- exact implementation will take much longer
- consider power-series

however: FPUs

Chebyshev approximation, best uniform approximation, Padé approximation, Taylor and Laurent series with range reduction and table lookup; all in hardware

Running-Time Computation: Introduction and Motivation

2) Forces and Motion

3 Differential Equation, Solution and Formulas

4 Generic Algorithm

5 Implementation in Scala

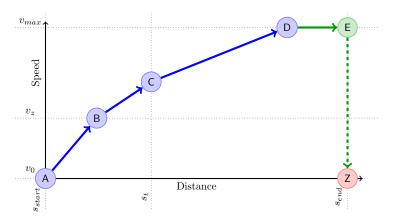
6 Results and Conclusion

A Generic Algorithm

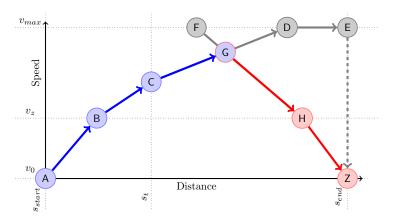
Phases

- acceleration,
- Including speed, and
- deceleration.

Acceleration and Coasting



Deceleration



Running-Time Computation: Introduction and Motivation

2) Forces and Motion

3 Differential Equation, Solution and Formulas

4 A Generic Algorithm

Implementation in Scala

6 Results and Conclusion

Why to Implement and How

Why?

- proof of concept
- 2 feasibility with respect to execution time

Requirements

- enterprise proven platform
- must be efficient and fun to do

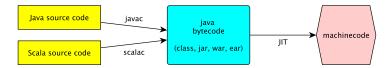
Conclusion

- platform: Java Virtual Machine
- language: Scala

About Scala

Scala

- Object Oriented and Functional hybrid language
- early adopter when starting out: one Book
- today sort of mainstream: about 20 Books, EU funding for next 5 years, used productively at twitter, ...



Why Scala - On a Superficial Level

Object Oriented Java

```
Polynomial z = new PolynomialImp(z0,z1,z2);
z.times(2);
Polynomial r = new PolynomialImp(r0,r1,r2);
r.negate();
r.times(3);
final Polynomial f = z.plus(r);
```

Functional Scala

```
val f = ( - Polynomial(r0,r1,r2) ) * 3 + Polynomial(z0,z1,z2) * 2
```

not convinced yet?

- what happens if you call r.negate() in Java?
- what is f referencing in Java anyways?

Why Scala - "meet and potatoes"

Why Scala - "meet and potatoes"

- functions as **first class values**, very good for **mathematical modelling**
- immutability by default, consistency and correctness in provable sense
- lazy evaluation and memoization; remember: computing t(s) is (due to root finding) expensive, in particular if you don't need it at all
- internal DSLs enable specifications as runnable code (BDD)

Running-Time Computation: Introduction and Motivation

2) Forces and Motion

3 Differential Equation, Solution and Formulas

4 A Generic Algorithm

Implementation in Scala

6 Results and Conclusion

Setup: Composition and Track

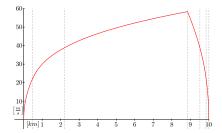
Property	Value
Mass [t]	507
Rotational Mass Equivalent [t]	24.5
Brake-Force [kN]	596.6
Resistance-Parameter r_0	7122
Resistance-Parameter r_1	0.0
Resistance-Parameter r_2	13.0

35 / 40

Track

- 10 km, flat, straight
- speed limits: none but v = 0 at end
- no limits on acceleration or jerk

Computation Result



Point	Distance [m]	Time [s]	Speed [m/s]
1	0	0	0
2	481	42.5	200/9
3	2209	97.0	350/9
4	8848	230.6	58.34
5	9515	244.3	350/9
6	9853	255.3	200/9
7	10000	268.5	0

Execution Time

Result

The implementation based on the exact solution executes about 85 times faster than those based on the euler method.

	DEQ Solution	Euler	Factor
Min.	2050	179550	
1. Qu.	2095	181002	
Median	2125	182240	85.76
Mean	2129	182534	85.74
3. Qu.	2153	184273	
Max.	2276	186597	

Notes

- more parameters of the track will have a more severe impact on the exact solution
- implementation, platform and even the hardware (remember the FPU) will have an influence

however:

- factor 85 gives some way to go
- we haven't optimized our implementation in the slightest way future:
 - larger experiment with real data

Conclusion

- it is feasible to compute the running time of trains exactly
- it is actually more **faster** to do so
- exact solution mitigates the "rounding problem"
- in the context of **optimization** the exact solution is highly beneficial compared to Euler approximation

thank you!

Copyright 2011 Dr. Thomas Schank

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License. It is allowed to use and redistribute this work as a whole. It is not allowed to change it. The source must be referenced.

The views and opinions expressed in this work do not necessarily represent those of my employer.