A Fast Algorithm for Computing the Running-Time of
Trains by Infinitesimal Calculus

IAROR RailRome 2011

Dr. Thomas Schank

February 17th 2011

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 1/ 40



]
About the Author

Dr. Thomas Schank

@ Physics and Mathematics; University of Konstanz, Germany
@ Ph.D. in Computer Science; University of Karlsruhe, Germany

@ today: Swiss Federal Railways, K-IT Business Applications

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 2 /40



]
Table of Contents

@ Running-Time Computation: Introduction and Motivation
© Forces and Motion

© Differential Equation, Solution and Formulas

@ A Generic Algorithm

© Implementation in Scala

@ Results and Conclusion

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 3 /40



Running-Time Computation: Introduction and Motivation

© Running-Time Computation: Introduction and Motivation

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 4 /40



Running-Time Computation: Introduction and Motivation Use Cases

Use Case: Timetable Planning

Oniine Timetable |
From: Bern Date: We, 16.02.11 « » » Calendar
To: Zirich Flughafen Time: 06:40

O Departure () Arrival
Via: » Search connection

» Advanced search  » New request » Return journey » Continue journey

Dol Sutbnsion  Due__[Tine, | Duratn [Crg _Traveuin occuparcy

© ;| HBem We, 16.02.11 dep 04:21
EA Zirich Flughafen arr 05:30

© o EBem We, 16.02.11 dep 04:40 158 1 IR, 82 1900 2%
EA Zirich Flughafen arr 06:38

© |3 HBem We, 16.02.11 dep 05:30  1:16 1 IC, IR 1800 2.8
EA Zirich Flughafen arr 06:46

© (4 HBem We, 16.02.11 dep 05:30  1:20 0 Ic 1800 2.8
EA Zirich Flughafen arr 06:50

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 5/ 40



Running-Time Computation: Introduction and Motivation Use Cases

Use Case: Infrastructure Planing

. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 6 /40



Running-Time Computation: Introduction and Motivation Use Cases

Use Case: Rolling Stock Acquisition

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 7 /40



Running-Time Computation: Introduction and Motivation Definition

Definition

given

o track with parameters: signals, speed limits, inclination, curvature,

@ composition with parameters: engine force, break force, weight,

resistance, ...

@ restrictions: limits on acceleration, limits on jerk, ...

result

@ minimal time required to traverse from start to end

location given time s(t) and inverse t(s)

o
@ speed at time v(t)
o

energy consumption

Dr. Thomas Schank

A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus

8 / 40



Running-Time Computation: Introduction and Motivation Requirements

Requirements

Basics
@ correct

@ precise
@ reliable
°

stable (small variation input — small variation output)

Timetable Optimization, Online Energy Conservation

frequent (re-)evaluation — fast computation

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 9 /40



Forces and Motion

© Forces and Motion

. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 10 / 40



Forces and Motion

Newton

e
Il
QL

Newton's Apple Tree
This apple tree. planted by
“Dr R Ekers, Director
||| Australia Telescope National Facility
1) in ctober, 1991,

6 is a direct descendant (scion) of an.

. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus

11/ 40



Forces and Motion Gravitational Field

Gravitational Field

Approximation

Fr=mgsing = hy

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 12 / 40



Forces and Motion Air Drag

Lord Rayleigh

1
F= ipCsz

Stokes’ law

F =6mRov

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 13 / 40



Accumulated Forces Against Direction of Motion
Accumulated Forces Against Direction of Motion

more forces
@ mechanical deformation

@ rotation

empirical evaluation

model with a second order polynomial

Resistance

Fr(v) = 1o + 710 + 190>

(Strahl 1913, Davis 1926, Lukaszewicz 2001)

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 14 / 40



Engine Force

300000
250000 -
200000 -
150000
100000

50000 (-

3.-10° — 1.13 - 10%v 0<wv
-2
1.72-10% 4+ 1.05 - 106e76-84107v 1 95103y 200 < 4 < 550

Fe[N](v[m/s]) = {

. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus

15 / 40



Engine Force - Second Order Approximation
Engine Force - Second Order Approximation

240000 -

220000

(a) Fe original (blue), F. quadratic (b) differences: F, — F. (blue), F; — F.
(red), Fi linear (yello) (red)

3.000 - 10° — 1.125 - 103v 0 < v < 200/9
F.[N](v[m/s]) = § 7.263 - 10° — 2.726 - 10%v + 3.128 - 10202 200/9 < v < 350/9
4.237-10% — 1.120 - 10%v + 1.000 - 10202 350/9 < v

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 16 / 40



Differential Equation, Solution and Formulas

© Differential Equation, Solution and Formulas

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 17 / 40



Differential Equation, Solution and Formulas Differential Equation of Train Dynamics

Differential Equation of Train Dynamics

Combine Forces

Newton

CL:’UZE’U

Differential Equation of Train Dynamics

b= a+ Bu+ yv?

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 18 / 40



Approximative Solutions, Euler Method
Approximative Solutions, Euler Method

A
As Az Ay
A Eulers Method
A o for ordinary differential equations with a
9 given initial value
o first order approximation

value at n is based on value at n — 1 by
linearization

smaller the steps — better approximation

de facto method

standard step-width 1 second

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 19 / 40



Differential Equation, Solution and Formulas The One Exact Solution

The One Exact Solution

A Solution
let k = 3% — 4y then

oft) = -8+ nmn}(fﬁ(t +1T)) 1)

is a solution for © = o + v + >
(CAS: Mathematica, Maple, ...; Briinger/Dahlhaus 2008; Wende 2003; ... )

Existence and Uniqueness

there is a solution (obviously) and this solution is unique

(Picard-Lindelof 1894)

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 20 / 40



Differential Equation, Solution and Formulas Caveats

Caveats

Complex Domain

k=pB?-4ayv/—rk = C-=C

everything with physical correspondance is in R

Periodic Functions

’8‘% (;\/—T(t - T))‘ < /2

be aware of branches in inverse functions

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 21 / 40



Differential Equation, Solution and Formulas Derived Equations

Derived Equations

speed — time

2
fT = p+2yw

arctan

time — distance
let ¢ = 31/=k(t + T) then
_ Bt+2Incosy
=
distance — time
use root finding, i.e. Brent-Dekker Algorithm

(Brent 1973, Dekker 1969)

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 22 / 40



Differential Equation, Solution and Formulas Derived Equations

Derived Equations

Acceleration
—rsec? )
4y

Jerk
V=r> sec?y tan v

Energy Consumption

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 23 / 40



Differential Equation, Solution and Formulas Execution Time: Euler Method vs. Exact

Execution Time: Euler Method vs. Exact

Execution Time: Euler Method vs. Exact
@ euler: many small, simple and inexpensive steps

@ exact: few large and expensive steps

Intuition
@ exact implementation will take much longer

@ consider power-series

however: FPUs

Chebyshev approximation, best uniform approximation,
ﬁ Padé approximation, Taylor and Laurent series with

range reduction and table lookup; all in hardware

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 24 / 40



A Generic Algorithm

@ A Generic Algorithm

. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 25 / 40



A Generic Algorithm

Phases
@ acceleration,
@ holding speed, and

© deceleration.

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 26 / 40



Azl e Ceosili
Acceleration and Coasting

e
3
2
3]

v

N
N (---------- m

Vo
(») - >
S Distance ~
s & S
“; @
=

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 27 / 40



A Generic Algorithm

Deceleration

Umax i(;)

=

Q

Q

o

& \
v
'UO

Distance

w

>

=
@

sstart
Send

. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 28 / 40



Implementation in Scala

© Implementation in Scala

. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 29 / 40



Implementation in Scala Why to Implement and How

Why to Implement and How

Why?
© proof of concept

@ feasibility with respect to execution time

Requirements
@ enterprise proven platform

@ must be efficient and fun to do

Conclusion

o platform: Java Virtual Machine

@ language: Scala

Dr. Thomas Schank

A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 30 / 40



About Scala

EScala

@ Object Oriented and Functional hybrid language
@ early adopter when starting out: one Book

@ today sort of mainstream: about 20 Books, EU funding for next 5
years, used productively at twitter, ...

ava source code j ;
J javac v
DYIScere machinecode
« : ) JIT
class, jar, war, ear
Scala source code scalac »Jar, b

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 31/ 40



Wiy Szl - O @ Supeiieel Lavel
Why Scala - On a Superficial Level

Object Oriented Java

Polynomial z = new PolynomialImp(z0,z1,z2);
z.times(2);
Polynomial r = new PolynomialImp(r0O,r1,r2);

r.negate();
r.times(3);
final Polynomial f = z.plus(xr);

Functional Scala

val f = ( - Polynomial(r0O,r1,r2) ) * 3 + Polynomial(z0,z1,2z2) * 2

not convinced yet?
@ what happens if you call r.negate() in Java?

@ what is f referencing in Java anyways?

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 32 /40



Why Scala - “meet and potatoes”

Why Scala - “meet and potatoes”

@ functions as first class values, very good for mathematical
modelling

o immutability by default, consistency and correctness in provable
sense

e lazy evaluation and memoization; remember: computing ¢(s) is (due
to root finding) expensive, in particular if you don’t need it at all

e internal DSLs enable specifications as runnable code (BDD)

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 33 /40



Results and Conclusion

© Results and Conclusion

. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 34 / 40



Results and Conclusion Setup: Composition and Track

Setup: Composition and Track

Track
@ 10 km, flat, straight

@ speed limits: none but v =0 at end

@ no limits on acceleration or jerk

Property Value

Mass [t] 507

Rotational Mass Equivalent [t] 24.5
Brake-Force [kN] 596.6
Resistance-Parameter r( 7122
Resistance-Parameter r1 0.0
Resistance-Parameter 1o 13.0

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus

35 / 40



Sarmpuiziien [Resuli
Computation Result

20

101/

=]

. Thomas Schank

A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus

Point Distance [m] Time [s] Speed [m/s]

\ 1 0 0 0
\ 2 481 42.5 200/9
| 3 2209 97.0 350/9
4 8848 230.6 58.34
\ 5 9515 244.3 350/9
6 9853 255.3 200/9

7 10000 268.5 0

36 / 40



Execution Time

Result

The implementation based on the exact solution executes about 85 times
faster than those based on the euler method.

DEQ Solution Euler Factor
Min. 2050 179550
1. Qu. 2095 181002
Median 2125 182240 85.76
Mean 2129 182534 85.74
3. Qu. 2153 184273
Max. 2276 186597

Dr. Thomas Schank

A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus

37 / 40



Notes

@ more parameters of the track will have a more severe impact on the
exact solution

@ implementation, platform and even the hardware (remember the
FPU) will have an influence

however:

o factor 85 gives some way to go

@ we haven't optimized our implementation in the slightest way
future:

@ larger experiment with real data

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 38 / 40



Results and Conclusion Conclusion

Conclusion

it is feasible to compute the running time of trains exactly
it is actually more faster to do so

exact solution mitigates the "rounding problem”

in the context of optimization the exact solution is highly beneficial
compared to Euler approximation

thank you!

Dr. Thomas Schank A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 39 / 40



Results Conclusion Conclusion

Legal

Copyright 2011 Dr. Thomas Schank

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License.
It is allowed to use and redistribute this work as a whole. It is not allowed to change it. The source must be referenced.

The views and opinions expressed in this work do not necessarily represent those of my employer.

A Fast Algorithm for Computing the Running-Time of Trains by Infinitesimal Calculus 40 / 40


http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/

