
FAST	AND	RESILIENT	INTEGRATION	TESTING
CONTINUOUS	LIFECYCLE	2015

		Dr.	Thomas	Schank

		Max	F.	Albrecht

Version	1.1.0

This	work	is	licensed	under	a	 .

			

		

http://drtom.ch/talks/2015/CL

Creative	Commons	Attribution-NoDerivatives	4.0	International	License

http://github.com/drtom
https://twitter.com/DrTom21
http://drtom.ch/
http://github.com/eins78
https://twitter.com/eins78
http://drtom.ch/talks/2015/CL
http://creativecommons.org/licenses/by-nd/4.0/

MADEK	TEAM	&	US

Thomas:	Software-Architect,	Developer,	CI-Infrastructure

Max:	Frontend	Software-Engineer,	Meta-Data	Concepts

	ZURICH	UNIVERSITY	OF	THE	ARTS

https://www.zhdk.ch/

-	
ARCHITECTURE	&	TECHNOLOGIES

Ruby	on	Rails,	Clojure

React	with	progressive	enhancement

3-tier	web-application

towards	micro-services

deployment	via	Ansible	to	private	cloud

MADEK		 MEDIENARCHIV	DER	KÜNSTE

https://github.com/madek
http://medienarchiv.zhdk.ch/

Madek 3.0 Architecture
Services and Interaction

Thomas Schank
Update 2015-11-07

WebApp
(Ruby on Rails)

(8880/-)

Web-
browser

...

Web-
browser

/

File System StorageX-Sendfile

API
(Clojure)

(8885/7885)

/a
pi

Client
(JSON)

Relational Database
(Postgresql)

Stored-Procedures
(PL/pgSQL)

/d
oc

s Filesystem
Generated HTML

MADEK	TESTING

→	integration	testing

→	components	interaction

"specification	by	example"

http://specificationbyexample.com/

1.	THE	PROBLEM



MADEK	PROJECT	2012
many	new	features,	many	new	tests

testing	time	1	1/2	-	2	hours,	increasing

more	and	more	failing	tests:	false	negatives

1/8	builds	pass

TRY	TO	IMPROVE	TESTS
very	time	and	resources
consuming

improvement	for	some	time

new	features	and	new	tests	made
efforts	futile

MANUAL	RETRYING
automated	tests,	local	retries

automatic	→	semi	automatic	testing

2.	COMPREHENSION

PROBABILITY	OF	A	FALSE	NEGATIVE	FOR	A	WHOLE
TEST-SUITE

	 Expression Example

probability	false
negative	single	test

3%

probability	"success" 0.97

number	of	tests 100

probability	"success"
whole	suite

→	only	one	out	of	20	will	pass	as	it	should

"succes"	=	true	positive

pf

= 1 −ps pf
n

= =Ps pn
s (1 −)pf

n ≈ 5%

WHY	RETRYING	WORKS	SO	WELL
let	 	number	of	independent	retries	per	test

	 	

Expected	successful	outcome	for	 	and	

k

1 5%

2 91%

3 99.7%

k
(n) = (1 −Ps pf)n⇒ (n, k) =P′

s (1 −)pk
f

n

n = 100 = 0.03pf
P′s

2.	COMPREHENSION	-	CONCLUSION
more	tests	→	exponential	increase	of	likeliness	for	false
negatives

compensate	by	retrying	single	tests	just	a	few	times

→	retrying	is	not	an	anti-pattern

→	it	can	be	a	necessity

3.	IMPLEMENTATION



JENKINS
fall	2012

build	creates	other	builds	via	the
Jenkins	API

last	build	aggregates

solved	false	negative	problem
(partly)

testing	time:	15	-	25	minutes

→	it	worked

frequent	code	pushes	interfere

"REST-like	style	API"	→	not
much	like	REST

considerable	effort	and
maintenance

→	Jenkins	and	"CI-X"	just	aren't
made	for	this

homegrown	solution,	started	in	spring	2013

inherent	support	for	retries	and	parallelization

test	reproducibility

tight	integration	with	source	code

manage	services	while	testing

support	everything	from	testing	to	deployment

ready	to	use	in	fall	2013,	never	looked	back

CIDER-CI

http://cider-ci.info/

4.	CONCEPTS	IN	CONTEXT



EXAMPLES

run	test-suite

perform	static	code	checks

build

deploy

jobs	can	be	triggered	and	can
depend	on	each	other

Job “run tests”

Job “deploy to staging”

when passed run

on update branch “staging” run

JOBS

PROJECT	CONFIGURATION
cider-ci.yml	file	in	the	project

The	source	is	the	truth.

configuration:	reproducible,	reviews,	audits	???

jobs:
 deploy_test:
 name: Deploy to test

 depends-on:
 - type: job
 job: integration-tests
 states: [passed]

 run-on:
 - type: branch
 include-match: ^master$

 # specify tasks etc

CIDER-CI	AND	THE	SOURCE	CODE
Cider-CI	"knows"	about	commits,	branches,	submodules,…

RepositoryCommit BranchJob tree-id

tree-id:	fingerprint	of	your	source	code

reproducibility

jobs	can	be	run	at	any	time	(later)

binary	search	for	"bad"	commits

commit	amends,	squashing:	existing	job	remains	valid

JOBS	&	TASKS

job:	container	and	state	aggregate	for	tasks

→	parallelization

Job
Task Task Task Task …

file:///Users/thomas/Presentations/2015-11_ContinuousLifecycle/slides/job-tasks-1e98d87e.svg

TASKS	&	TRIALS

blueprint

container	and	state	aggregate	for	trials

→	resilience

Task

…
try

Trial

…
(fail)

(re-)try

Trial

…
(pass)

set as
“failed”

set as
“passed”

file:///Users/thomas/Presentations/2015-11_ContinuousLifecycle/slides/trial-retry-2273ed85.svg

Trial

script

script

script

script

TRIAL	&	SCRIPTS
actual	unit	of	execution

executed	in	the	same	context

depend	on	each	other

SCRIPT	DEPENDENCIES

traditional	CI:	one	"build"	⇔	one	script

more	modern:	one	main	script	+	before	and	after	"hooks"

Cider-CI:	scripts	with	dependencies

4.	DEMOS



Madek Datalayer

Madek

Integration-Tests

Deploy to “test”

Madek Webapp

Code Checks
Madek API

Tests
Feature Tests

All Tests

Unit Tests

Code Checks

All Tests

Unit Tests

Deploy to “test8”

file:///Users/thomas/Presentations/2015-11_ContinuousLifecycle/slides/madek_job-dependencies-3e00dc46.svg

file:///Users/thomas/Presentations/2015-11_ContinuousLifecycle/slides/jobs-demo.mp4

file:///Users/thomas/Presentations/2015-11_ContinuousLifecycle/slides/retry_and_scripts.mp4

5.	ADDENDUM



MANAGING	FALSE	POSITIVES
Retrying	randomized	tests	can	hide	problems!

"Generative	Testing"	e.g.

SOLUTION:
reproducibility	by	initializing	the	pseudo	random
generator	(we	use	the	tree_id	e.g.)

statistics

GIT	SCM	AND	GIT	ONLY
don't	compromise

can't	support	everything	with	reasonable	effort

SECURITY	&	TRUST
Cider-CI	server	itself	never	runs	any	code	from	projects

"blessed"	executors	only	accept	trials	for	a	particular
project	(repository)

MATCHING	TRIALS	TO	EXECUTORS
task	specifies	required	traits,	e.g:	[bash,	ruby-2.2]

executors	advertise	available	traites,	e.g.	[bash,	maven,
postgresql,	ruby-2.1,	ruby-2.2,	…]

Cider-CI	will	determine	a	suitable	executor.

DEPLOYMENT
Ansible

Cider-CI	deploy	project,	SCM	managed,	reproducible

CIDER-CI	IS	AN	EXPERT	SYSTEM
it	is	about	making	the	hard	possible,	and	not	not	about

making	the	simple	easy*

for	professionals

no	compromises

steep	learning	curve

high	rewards

→	swiss	army	knife	for	devops

*see	"Simple	Made	Easy"	by	Rich	Hickey

CONCLUSION
A	false	negative	outcome	becomes	likely	with	an
increasing	number	of	tests.

The	problem	must	be	solved	by	retrying	single	tests.

Consider	to	build	your	own	pipeline.

Try	Cider-CI,	open	source,	installs	with	two	commands:
http://docs.cider-ci.info/introduction/quick-start/	

Thank	You!

http://docs.cider-ci.info/introduction/quick-start/

